Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

News & Events

Directing immune development to curb sky-rocketing disease

Once upon a time it was infectious diseases like polio, measles or tuberculosis that most worried parents. With these threats now largely under control, parents face a new challenge – sky-rocketing rates of non-infectious diseases such as asthma, allergies and autism.

Research

Chemical analysis of new and “aged” e-liquids: Development of a rapid toxicological screening approach

Alexander Larcombe BScEnv (Hons) PhD Honorary Research Fellow Honorary Research Fellow Associate Professor Alexander Larcombe began work at The Kids

Research

Investigating the effects of macrolides on excessive synthesis and secretion of airway mucins using novel ex vivo and in vivo approaches

Alexander Larcombe BScEnv (Hons) PhD Honorary Research Fellow Honorary Research Fellow Associate Professor Alexander Larcombe began work at The Kids

Research

Lung function in a model of a paediatric metabolic disease

Alexander Larcombe BScEnv (Hons) PhD Honorary Research Fellow Honorary Research Fellow Associate Professor Alexander Larcombe began work at The Kids

Research

Azithromycin inhibits mucin secretion, mucous metaplasia, airway inflammation, and airways hyperresponsiveness in mice exposed to house dust mite extract

Excessive production, secretion, and retention of abnormal mucus is a pathological feature of many obstructive airways diseases including asthma. Azithromycin is an antibiotic that also possesses immunomodulatory and mucoregulatory activities, which may contribute to the clinical effectiveness of azithromycin in asthma.

Research

Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure

Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels.

Research

Exacerbation of chronic cigarette-smoke induced lung disease by rhinovirus in mice

A significant proportion of chronic obstructive pulmonary disease exacerbations are strongly associated with rhinovirus infection (HRV). In this study, we combined long-term cigarette smoke exposure with HRV infection in a mouse model.

Research

In Vitro primary human airway epithelial whole exhaust exposure

The method outlined in this article is a customization of the whole exhaust exposure method generated by Mullins et al. (2016) using reprogrammed primary human airway epithelial cells as described by Martinovich et al. (2017). It has been used successfully to generate recently published data (Landwehr et al. 2021). The goal was to generate an exhaust exposure model where exhaust is collected from a modern engine, real-world exhaust concentrations are used and relevant tissues exposed to assess the effects of multiple biodiesel exposures.

Research

Long-term exposure of mice to 890 ppm atmospheric CO2 alters growth trajectories and elicits hyperactive behaviours in young adulthood

Atmospheric carbon dioxide (CO2) levels are currently at 418 parts per million (ppm), and by 2100 may exceed 900 ppm. The biological effects of lifetime exposure to CO2 at these levels is unknown. Previously we have shown that mouse lung function is altered by long-term exposure to 890 ppm CO2. Here, we assess the broader systemic physiological responses to this exposure.

Research

Distribution, composition, and activity of airway-associated adipose tissue in the porcine lung

Patients with comorbid asthma-obesity experience greater disease severity and are less responsive to therapy. We have previously reported adipose tissue within the airway wall that positively correlated with body mass index. Accumulation of biologically active adipose tissue may result in the local release of adipokines and disrupt large and small airway function depending on its anatomical distribution. This study therefore characterized airway-associated adipose tissue distribution, lipid composition, and adipokine activity in a porcine model.